
J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

Published by Institute of Physics Publishing for SISSA

Received: August 30, 2007

Revised: November 15, 2007

Accepted: December 8, 2007

Published: December 12, 2007

Emergent gravity from noncommutative gauge theory

Harold Steinacker

Fakultät für Physik, Universität Wien,

Boltzmanngasse 5, A-1090 Wien, Austria

E-mail: harold.steinacker@univie.ac.at

Abstract: We show that the matrix-model action for noncommutative U(n) gauge the-

ory actually describes SU(n) gauge theory coupled to gravity. This is elaborated in the

4-dimensional case. The SU(n) gauge fields as well as additional scalar fields couple to an

effective metric Gab, which is determined by a dynamical Poisson structure. The emer-

gent gravity is intimately related to noncommutativity, encoding those degrees of freedom

which are usually interpreted as U(1) gauge fields. This leads to a class of metrics which

contains the physical degrees of freedom of gravitational waves, and allows to recover e.g.

the Newtonian limit with arbitrary mass distribution. It also suggests a consistent picture

of UV/IR mixing in terms of an induced gravity action. This should provide a suitable

framework for quantizing gravity.

Keywords: Gauge Symmetry, M(atrix) Theories, Models of Quantum Gravity,

Non-Commutative Geometry.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep122007049/jhep122007049.pdf

mailto:harold.steinacker@univie.ac.at
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

Contents

1. Introduction 1

2. Gauge fields and Poisson geometry 3

3. Effective metric 5

3.1 Effective gauge theory and Seiberg-Witten map 7

4. Emergent gravity 12

4.1 Geometry, gravitational waves and u(1) gauge fields 15

4.2 Connection and curvature, examples 17

4.3 Coordinates, gauge invariance and symplectomorphisms 19

5. Remarks on the quantization 20

6. Discussion 20

A. Derivation of the effective action to leading order 22

B. Newtonian metric 30

C. Computation of η(y) 32

1. Introduction

It is generally accepted that the classical concepts of space and time will break down at

the Planck scale, where quantum fluctuations of space-time due to the interplay between

gravity and quantum mechanics become important. One way to approach this problem is

to replace classical space-time by some kind of quantum space, incorporating space-time

uncertainty relations such as those obtained in [1]. This leads to noncommutative (NC)

field theory, where some fixed NC space is assumed; for basic reviews see e.g. [2].

After considerable progress in the understanding of field theory on “fixed“ NC or quan-

tum spaces, it is of fundamental importance to understand how a dynamical quantum space

in the spirit of general relativity can be incorporated in such a framework. If noncommu-

tative spaces are related to quantum gravity, the incorporation of gravity should be simple

and natural. Furthermore, one should take into account the lessons from string theory,

which provides a realization of quantum spaces as D-branes in a nontrivial B-field back-

ground [3], and points to a relation with gravity [4 – 11]. While several formulations of NC

gravity have been proposed by deforming various formulations of general relativity [17 – 25],

a simple and compelling mechanism would be very desirable.
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To identify this mechanism, it is helpful to reconsider gauge theories. There is a very

simple and natural formulation of u(n) NC gauge theory in terms of matrix models, typi-

cally of the form S ∼= Tr[Xa,Xb][Xa,Xb]+· · · . Such actions describes gauge theory on the

quantum plane R
d
θ. Similar actions arise in the context of string theory, such as the IKKT

model [7]. The dynamical objects are matrices resp. operators Xa = Y a+ Aa ∈ A⊗ u(n)

(”covariant coordinates”), where Y a generates the algebra of functions A ∼= L(H) on some

NC space. The central observation is that the fluctuations Aa ∈ A of the covariant coordi-

nates can be interpreted as u(n)-valued gauge fields on the NC space. These considerations

become more rigorous for compact quantum spaces such as CP 2
N or S2

N × S2
N , which are

described by finite matrix models of similar type [26, 27].

Even though this realization of gauge fields is very appealing, it is nevertheless strange:

fluctuations of NC coordinates ought to describe fluctuations of the geometry, rather than

gauge fields. This is particularly compelling for gauge theory “on” fuzzy spaces such as

CP 2
N or S2

N × S2
N , where the geometry of the space is indeed dynamical and given by the

minimum 〈Xa〉 = Y a of an appropriate matrix model. This strongly hints at an implicit

gravity sector. There is also strong evidence for the presence of gravity in the IKKT matrix

model of type IIB string theory [7 – 11], and even for a D=4 compactification thereof [9, 11]

which can be viewed as a supersymmetric version of the model which will be studied here.

Further striking parallels between gravity and NC gauge theory include the absence of local

observables, and the implementation of translations as gauge transformations. Finally, the

u(1) sector of D=4 noncommutative gauge theory is afflicted by the infamous UV/IR

mixing [28 – 30], leading to a behavior which is very different from electrodynamics.

We show in this paper that the matrix model formulation of NC gauge theory in 4

dimensions does in fact contain gravity. More precisely, it should be interpreted as su(n)

gauge theory coupled to gravity, with dynamical geometry determined by u(1) components

of the covariant coordinates Xa. This solves at the same time a long-standing problem

how to define NC su(n) gauge theory: It has been known that the u(1) sector of NC

gauge theory cannot be disentangled from the su(n) sector in any obvious way. Here we

understand this fact as the coupling of the su(n) gauge fields to gravity.

One may wonder how it is possible that nontrivial geometries arise from what is usually

interpreted as u(1) gauge fields. The answer is quite simple: the effective geometry is

determined by the metric Gab = −θac(y)θbd(y)gcd, where θac(y) = θ
ac

+ F ab(y) is the

dynamical Poisson tensor which is usually split into background NC space and u(1) field

strength, for gab = δab resp. gab = ηab in the Euclidean resp. Minkowski case. While such

metrics do not reproduce the most general geometries, they do contain the physical degrees

of freedom of gravitational waves, and allow to obtain e.g. the Newtonian limit. Therefore

this provide a physically viable class of geometries for gravity.

The observation that gravity can arises from NC gauge theory is not new. In particular,

Rivelles [31] found a linearized version of the same effective metric coupling to scalar fields

on R
4
θ, without addressing however nonabelian gauge fields. The idea that NC u(1) gauge

theory should be viewed as gravity was put forward explicitly in [32, 33] from the string

theory point of view. We establish this mechanism in detail based on a very simple and

explicit matrix model, and clarify the associated geometry.
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The basic message is that gravity is already contained in the simplest matrix models

of NC gauge theory. There is no need to invoke any new ideas. This striking mechanism

takes advantage of noncommutativity in an essential way, and has no commutative analog.

Furthermore, the quantization of matrix models is naturally defined by integrating over

the space of matrices. We will argue that this induces the action for gravity in the spirit

of [34], which suggests a natural role of UV/IR mixing. However, the vacuum equations

Rab ∼ 0 are obtained even at tree level. While some freedom remains for modification

of the action (in particular extra dimensions), the resulting gravity theory appears to be

quite rigid. It is different from general relativity but consistent with the Newtonian limit.

Moreover, some post-Newtonian corrections of general relativity appear to be reproduced,

however a more detailed analysis is required. While no final judgment can be made here

concerning the physics, simplicity and naturalness certainly support this mechanism.

The results of this paper should also shed new light on gravity in the IKKT model, in

the presence of a noncommutative D-brane. While this model is expected to contain gravity

due to its relation with string theory, an explicit identification of nontrivial geometries has

proved to be difficult [13, 12]. This is discussed in section 3.

The outline of this paper is as follows. We first explain the separation of the covariant

coordinates in geometric and gauge degrees of freedom, which is the essential step of our

approach. This leads to a dynamical theory of Poisson manifolds, to which we associate

in section 3 an effective metric. In section 3.1 we establish that this metric indeed governs

the low-energy behavior of both scalar and gauge fields. The technical details for the gauge

fields are lengthy and delegated to appendix A. Section 4 elaborates to some extent the

physical content of the emerging gravity theory, in particular the induced Einstein-Hilbert-

like action, UV/IR mixing, gravitational waves, the Newtonian limit and few examples.

We conclude with discussion and outlook.

2. Gauge fields and Poisson geometry

Consider the following matrix model action for noncommutative gauge theory in 4 dimen-

sions

SYM = −Tr[Xa,Xb][Xa′

,Xb′ ]gaa′gbb′ , (2.1)

for

gaa′ = δaa′ or gaa′ = ηaa′ (2.2)

in the Euclidean resp. Minkowski case. Here the ”covariant coordinates” Xa are hermitian

matrices or operators acting on some Hilbert space H. The basic symmetries of this action

are the gauge symmetry

Xa → UXaU−1, U ∈ U(H) (2.3)

where U(H) are the unitary operators on H, translational invariance Xa → Xa + ca

for ca ∈ R, and global SO(4) resp. SO(3, 1) invariance. The more conventional action

Tr([Xa,Xb] −θ
ab

)2 for R
4
θ

[35] differs from (2.1) only by a constant shift and a topologi-

cal or boundary term of the form Tr[Xa,Xb] θ
ab

. We consider (2.1) to avoid introducing

– 3 –
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the constant tensor θ
ab

at this point, thereby stressing background-independence. This is

also the type of action which is typically found in the context of string theory [7, 3]. The

equations of motion are

[Xa, [Xa′

,Xb′ ]]gaa′ = 0. (2.4)

A particular solution is given by Xa = Y
a
, where the Y

a
satisfy the commutation relations

[Y
a
, Y

b
] = θ

ab
. (2.5)

These generate the algebra A ∼= R
4
θ

of functions on the Moyal-Weyl quantum plane. Here

θ
ab

is assumed to be constant and non-degenerate, and the Y
a

have the standard Hilbert-

space representations. To avoid cluttering the formulas with i we adopt the convention

that θab is purely imaginary, and similarly for the field strength Fab etc. below. Another

solution is given by Xa = Y
a ⊗ 1ln, which will lead to u(n) gauge theory.1

In this paper, we will focus on configurations (which need not be solutions of the e.o.m.)

which are close to the “vacuum” solution Xa = Y
a⊗1ln. This will lead to noncommutative

u(n) gauge theory, or rather su(n) gauge theory coupled to gravity. Hence consider small

fluctuations of the form

Xa = Y
a ⊗ 1ln + Aa(Y ) (2.6)

with Aa(Y ) ∈ A ⊗ Mn(C). We will replace f(Y ) → f(y) whenever f(Y ) ∈ A can be well

approximated by a classical function f(y). In the conventional interpretation, Aa(Y ) =

Aa
0(Y ) ⊗ 1ln + Aa

α(Y ) ⊗ τα is viewed as u(n)-valued gauge field, where τα are a basis of

su(n). Here we will adopt a different approach, separating the trace- u(1) part (i.e. the

coefficient of 1ln) and the remaining nonabelian part as follows:

Xa = Y a 1ln + Aa(Y ) = Y a 1ln + Aa
α(Y ) τα . (2.7)

Here

Y a = Y
a

+ Aa
0(Y ) (2.8)

contains the full trace-u(1) component, and will be interpreted as generators of a NC space

Mθ with general noncommutativity

[Y a, Y b] ≡ θab(Y ) ≈ θab(y) . (2.9)

The other, nonabelian components Aa
α(Y ) will be considered as functions of the coordinate

generators Y a resp. ya.

The essential point is the following: what is usually interpreted as “abelian gauge

field” Aa
0 is understood here as fluctuation of the quantum space, which determines a

Poisson structure θab(y) and eventually a metric Gab(y) (3.5). The remaining “nonabelian”

Aa
α(y) τα describe su(n)-valued gauge field. The well-known fact that the u(1) and su(n)

1the rank n of therefore not determined by the matrix model but by the choice of vacuum solution. If

desired, n can be controlled at least in the Euclidean case by compactifying the space and considering e.g.

fuzzy S2 × S2 or CP 2 [26], where H is finite-dimensional.
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components cannot be completely disentangled in NC gauge theory will be understood here

as coupling of the su(n) gauge fields to gravity.

The physical reason why the splitting (2.7) of u(1) and su(n) components is appropriate

will be seen by considering gauge-invariant actions such as (2.1) or (3.1). The reason is

that the kinetic term in the underlying matrix-model action always involves the induced

metric Gab identified below. This universal coupling to a metric Gab is strongly suggestive

of gravity. This is based on the observation that in the framework of matrix models, all

fields must be in the adjoint in order to acquire a kinetic term. However, other types of

matter and low-energy gauge fields close to those required for the standard model can arise

after spontaneous symmetry breaking, see e.g. [36].

Semi-classical limit: Poisson manifolds. We want to understand the geometrical

significance of the various configurations (2.9). The emerging picture is that the u(1)

sector of the matrix model describes a dynamical theory of Poisson manifolds.

Consider generators Y a of A satisfying (2.9), and assume that θab(Y ) is “close” to

a smooth Poisson structure θab(y). This defines a (local) Poisson manifold (M, θab(y))

whose quantization is given by Y a. Conversely, using a general result of Kontsevich [37] we

can quantize essentially any Poisson structure2 at least locally via such Y a. To make this

mathematically more precise, the concept of a star-product is useful. Given an isomorphism

of vector spaces

C(M) → A (2.10)

where C(M) denotes the space of functions on M, one can define via pull-back a “star

product” on C(M). Assuming that this star product has a meaningful expansion in powers

of θ, the commutator of 2 elements in A reduces to the Poisson bracket of the classical

functions on M to leading order in θ. More precisely, using a suitable change of variables

one can choose the star product (e.g. by taking the one given in [37]) such that

[f, g] = i{f, g} + O(θ3) = θab(y) ∂a(f) ∂b(g) + O(θ3) (2.11)

to O(θ3). This will be important below in order to extract the semiclassical limit. In

particular, this implies

[Y a, f(Y )] = i{ya, f(y)} + O(θ3) = θab(y) ∂bf(y) + O(θ3) . (2.12)

where ya denotes the pull-back of Y a.

3. Effective metric

We now show how a dynamical metric arises naturally from matrix model actions. The

basic mechanism is seen most easily for scalar fields.

2we ignore the distinction between formal and convergent star products here.
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Scalar fields. In the framework of matrix models, the only possibility to obtain kinetic

terms is through commutators [Xa,Φ] ∼ θab(y)∂bΦ + [Aa,Φ]. Therefore only fields in the

adjoint are admissible, with action

S[Φ] = −Tr gaa′ [Xa,Φ][Xa′

,Φ]. (3.1)

In a configuration as in (2.7) with nontrivial background Y a and su(n)-valued fluctuations

Xa = Y a ⊗ 1ln + Aa(Y ) , (3.2)

we can obtain the commutative limit using the naive change of variables

Aa = θab(y)Ãb (3.3)

where Ãa is antihermitian. The action then takes the form

S[Φ] ≈ −Tr θab(y) θa′c(y)gaa′ (∂bΦ + [Ãb,Φ])(∂cΦ + [Ãc,Φ])

= Tr Gab(y)DaΦDbΦ (3.4)

to leading order, defining the effective metric

Gab(y) = −θac(y)θbd(y) gcd (3.5)

where gcd is the background metric (2.2) and Da = ∂a + [Ãa, .].

Some remarks are in order. We will show below that the naive substitution (3.3) is

sufficient here and (3.4) is indeed the correct classical limit. An infinitesimal version of (3.5)

was already obtained in [31] up to a trace contribution, which is explained in section 4.1.

Furthermore, observe that

ea
b (y) := −iθac(y)gcb (3.6)

can be interpreted as vielbein; this is consistent with the expression (3.5) for the metric

Gab. The antisymmetry of θac(y) reflects the choice of a special “gauge” in comparison

with the standard formulation of general relativity. Note that Gab is nondegenerate if and

only if the Poisson tensor θab(y) is non-degenerate. In this paper we assume that θab(y)

is non-degenerate, even though degenerate cases are possible and are expected to be very

interesting. Finally, the effective metric Gab determines in particular the spectrum of the

Laplacian acting on Φ; this will become important in section 4.

Nonabelian gauge fields. Now consider the commutator [Xa,Xb] in the nonabelian

case, for the same background. Using (2.7), we have

[Xa,Xb] = θab(Y ) 1ln + Fab(Y ) (3.7)

where

Fab = [Y a,Ab] − [Y b,Aa] + [Aa,Ab] (3.8)

is the noncommutative field strength. Our aim is to obtain the classical limit of the action

(2.1), and to show that it can be interpreted as an ordinary gauge field coupled to the

effective metric Gab. To develop some intuition, we first give a naive, incomplete argument

before embarking into the correct but less transparent Seiberg-Witten expansion.

– 6 –



J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

Naive analysis. Let us try the naive3 change of variables (3.3) which for constant θab

correctly leads to the classical limit. Using (2.12), we would obtain

Fab = θac(y)θbd(y)Fcd (3.9)

where

Fab ≈ ∂aÃb(y) − ∂bÃa(y) + [Ãa(y), Ãb(y)] + O(θ−1∂θ) + O(θ) (3.10)

where O(θ−1∂θ) stands for terms of the type θ−1
cd [θdb, Ãa]. These are small as long as

θ−1 ∂θ ≪ ∂Ãa, (3.11)

i.e. if the variations of θab(y) resp. Gab are much slower than those of the gauge fields Ãc.

One can then interpret Fab(y) as gauge field strength, which certainly holds for constant

θab. Note also that the leading term of Fab takes values in su(n), but there are u(1)

contributions of order θ due to e.g. {Aa,Ab}. Neglecting these, we would have

Tr(θabFab) ≈ 0

and the action would be

SYM ≈ −Tr
(

θab θa′b′ + Fab(y)Fa′b′(y)
)

gaa′gbb′

= Tr
(

Gab(y)gab − Gcc′(y)Gdd′(y)Fcd(y)Fc′d′(y)
)

(3.12)

in the semi-classical limit. This suggests that the nonabelian gauge fields are indeed coupled

as expected to the open-string metric Gab. However, we need a more sophisticated analysis

using the Seiberg-Witten map to establish this, because the neglected terms in (3.10) are

of the same order as the coupling to the gravitational fields i.e. the connection, and the

u(1) terms in {Aa,Ab} do in fact contribute at the leading order. This is reflected by the

fact that Fab is not gauge invariant in the commutative limit unless θab = const.

Relation with string theory. Our effective metric Gab (3.5) is strongly reminiscent

of the “open string metric” on noncommutative D-branes in a B-field background [3], in

the Seiberg-Witten decoupling limit α′ → 0. Our background metric gab can then be

interpreted as “closed string metric” of the embedding space. However, the θab(y) which

enters our metric Gab is non-constant and determined by the full u(1) part of B′ = B + F
on the brane, unlike in [3]. This should be related to the symmetry A → A+Λ, B → B−dΛ

in the context of string theory as pointed out in [32, 33], where the different role of the

u(1) and the su(n) sectors was ignored however. We will see below that Gab is also the

effective metric for the su(n) YM-action.

3.1 Effective gauge theory and Seiberg-Witten map

In this section, we implement the separation (2.7) of the Xa in NC background Y a and

su(n) gauge fields, and carefully determine the classical limit of the action (2.1). The su(n)-

valued components of Aa will be expressed using a Seiberg-Witten map in terms of classical

3replacing this with the slightly less-naive Aa = 1

2
{θab(y), Ãa} does not solve the problem

– 7 –
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su(n)-valued gauge fields Aa, on a noncommutative background θab(y) determined by the

u(1) components Y a. The latter eat up the “would-be u(1) gauge fields” and determine the

metric Gab(y). Thus the full u(1) sector determines the dynamical NC parameter θab(y)

and the geometry Gab, while the nonabelian su(n) fields are expanded to leading order in

θab(y) and couple to Gab. This analysis is surprisingly involved.

Let us rewrite the nonabelian gauge fields Aa
α = Aa

α(Aa) in terms of classical antiher-

mitian su(n)-valued gauge fields Aa using the Seiberg-Witten map [3],4 dropping the index

α from now on. The classical gauge fields transform under su(n) gauge transformations as

δclAa = −i∂aλ + i[λ,Aa] = −i∂aλ + i[λ, τα]Aa,α . (3.13)

The appropriate SW-map for general θab(y) is given by [38]

Aa = θabAb −
1

2
(Ac[Y

c, θadAd] + AcF
ca) + O(θ3)

=: θabAb + Aa
SW,2 + O(θ3) (3.14)

and satisfies

δΛ(Xa) = i[Λ, Y a + Aa] = δclAa (3.15)

with the NC gauge parameter

Λ = λ +
1

2
θab(∂aλ)Ab . (3.16)

This means that the action (2.1) expressed in terms of Aa is invariant under the classical

su(n) gauge transformations acting on Aa. This in turn implies that the action can be

written as a function of the ordinary su(n) field strength

F ab := θacθbdFcd = θbd[Y a, Ad] − θac[Y b, Ac] + θacθbd[Ac, Ad] + O(θ4)

Fab := ∂aAb − ∂bAa + [Aa, Ab] (3.17)

In this section, we adopt the convention that indices are raised and lowered with θab rather

than a metric, e.g. Aa := θabAb etc. Note that it is Fab rather than Fab which has the

correct classical limit as a 2-form for general θab(y), and the classical limit can only be

understood correctly in terms of Fab. The reader not interested in technical details can

jump to the resulting action (3.36).

Contribution to the action. We want to obtain the classical limit of the action (2.1)

S = −Tr(FabFab + 2θabFab + θabθab)

in terms of the Aa or Fab. This requires keeping all terms of order O(θ4). The NC field

strength is

Fab = [Y a,Ab] − [Y b,Aa] + [Aa,Ab]

= [Y a, Ab] − [Y b, Aa] + [Aa, Ab] + Fab
SW,2 + O(θ4) (3.18)

4The Seiberg-Witten map is used simply as a change of the field coordinates. It does not imply that we

work in the framework of star-products. The non-hermitean version is used here for brevity, which is easily

made hermitian.
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where

Fab
SW,2 = [Y a + Aa, Ab

SW,2] + [Aa
SW,2, Y

b + Ab] + [Aa
SW,2A

b
SW,2]

= [Xa, Ab
SW,2] + [Aa

SW,2,X
b] + O(θ4), (3.19)

since Aa
SW,2 = O(θ2). We must carefully keep track of the u(1) components of Fab to order

θ3 and the su(n) components to order θ2. Dropping higher-order terms, one has

Fab = [Y a, Adθ
bd] − [Y b, Adθ

ad] + [Aa, Ab] + Fab
SW,2

= F ab − Ac[Y
c, θab] + [Aa, Ab] − θaa′

θbe′ [Aa′ , Ae′ ] + Fab
SW,2 (3.20)

using the Jacobi identity for θab, and thus

S = −Tr
(

F abF ab − 2F abAc[Y
c, θab] + Ac[Y

c, θab][Y d, θab]Ad

+2(F ab − Ac[Y
c, θab])([Aa, Ab] − θaa′

θbe′ [Aa′ , Ae′ ])

+([Aa, Ab] − θaa′

θbe′ [Aa′ , Ae′ ])
2 + 2θab[Aa, Ab]

)

+ SSW,2 (3.21)

up to O(θ4), dropping the constant Trθabθab for now. Here

SSW,2 = −Tr (2θabFab
SW,2) = −Tr (4θab[Xa, Ab

SW,2]) , (3.22)

and we routinely drop subleading terms and use identities such as Trθab[Y a, Ab] = 0 since

Aa ∈ su(n). Similarly, we can set [A, θ] = 0 in the O(A3) and O(A4) terms to leading

order. For example,

[Aa, Ab] = θaa′

θbb′ [Aa′ , Ab′ ] + O(θ3) (3.23)

which simplifies (3.21). Note also that the only contribution from θabFab is the NC (Poisson

bracket) contribution in θab[Aa, Ab]. Therefore

S = −Tr
(

F abF ab−2F abAc[Y
c, θab]+Ac[Y

c, θab][Y d, θab]Ad+2θab[Aa, Ab]
)

+SSW,2 . (3.24)

After a tedious computation (see appendix A) using elementary trace-manipulations, one

obtains

S = −Tr

(

F abF ab − θabF abθcdFcd − 2θabF adθ−1
dc F bc +

1

8
θabθabθcdθij(FcdFij + 2FidFjc)

)

= −Tr

(

Gcc′Gdd′Fcd Fc′d′ + Fa′b′Fcd(θ
a′aθabθbb′)θcd + 2Fa′cFb′c′(θ

a′aθabθbb′)θc′c

+
1

8
θabθabθcdθij(FcdFij + 2FidFjc)

)

≡ −Tr Gcc′Gdd′Fcd Fc′d′ + SNC (3.25)

which is exact to order O(θ4). This action is manifestly gauge invariant, and for θab = const

it reduces to the standard YM action S = TrF abF ab up to boundary terms, as it should.

From now on, we no longer raise or lower indices with θab.
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The “noncommutative” terms SNC can be simplified further by considering the fol-

lowing dual evaluation of the 4-form resp. totally antisymmetric 4-tensor 1
2(F ∧ F )ijkl =

(FijFkl − FilFkj − FljFki):

1

2
(F ∧ F )ijklθ̃

ijθkl = (Fij θ̃
ij)(Fklθ

kl) + 2FilFjkθ̃
ijθkl. (3.26)

We note that for θ̃ij = θikθklθlj = (θgθgθ)ij these are precisely the terms in SNC, and

conclude

SNC = −Tr
1

2
(F ∧ F )ijkl

(

θ̃ijθkl +
1

8
(θabθab)θijθkl

)

(3.27)

where θabθab ≡ −Gabgab upon reinserting g. Since F ∧F is a 4-form, it only couples to the

totally antisymmetrized components (θ̃ ∧ θ)ijkl of θ̃ijθkl, which can be interpreted as dual

4-form. Because the space of 4-forms is one-dimensional, we must have θ̃ ∧ θ = η(y)θ ∧ θ,

and it is easy to see that (see appendix C)

η(y) =
1

4
Gabgab . (3.28)

Using (F ∧ F )ijklθ
ijθkl = 1

6(F ∧ F )ijkl(θ ∧ θ)ijkl = −1
3

√

det(θab)(F ∧ F )ijkl ε
ijkl we finally

obtain

SNC =
1

2
Tr(Gabgab)

√

det(θab)
1

4!
(F ∧ F )ijklε

ijkl . (3.29)

This reduces to a topological surface term for constant θab, but not for general θab(y).

Volume element. Finally we want to rewrite the trace as an integral in the semiclassi-

cal limit. According to standard Bohr-Sommerfeld quantization, the appropriate relation

should be

(2π)2Trf(y) ∼
∫

1

2
ω2f(y) =

∫

d4y ρ(y) f(y) (3.30)

or equivalently

(2π)2Tr
√

det(θab) ∼
∫

d4y, (3.31)

where ω = iθ−1
ab (y)dyadyb is the symplectic form, and 1

2ω2 = ρ(y)d4y the symplectic volume

element. A precise way to justify this for general (non-degenerate) θab(y) is to require the

trace property

Tr[f, g] ∼
∫

ρ(y){f, g} = 0 (3.32)

up to boundary terms, which fixes ρ(y) up to a constant factor. It is easy to see that

ρ(y)d4y = 1
2ω2 indeed satisfies this requirement:

∫

ω2{f, g} =

∫

ω2Xf [g] =

∫

ω2iXf
dg

= −
∫

(iXf
ω2)dg = 2

∫

(iXf
ω)ωdg =

∫

dfωdg = 0 (3.33)
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up to boundary terms, where Xf is the Poisson vector field generated by {f, .}. Explicitly,

ρ(y) = Pfaff(iθ−1
ab ) =

√

det θ−1
ab = (det(gab) det(Gab))1/4

=: Λ4
NC(y) (3.34)

where ΛNC(y) can be interpreted as “local” scale of noncommutativity.

Effective gauge action. Reinserting the constant term

−Tr θabθa′b′gaa′gbb′ = Tr Gaa′

gaa′ = 4Tr η(y) (3.35)

we finally obtain the classical limit of the action (2.1) in the background Y a:

SYM = c

∫

d4y ρ(y)tr
(

4η(y) − Gcc′Gdd′Fcd Fc′d′

)

+ 2c

∫

η(y) trF ∧ F (3.36)

where an overall constant c has been inserted, and tr() denotes the trace over the su(n)

components. This is an action for a su(n) gauge field coupled to a dynamical metric Gab(y)

and the constant background metric gab.

Note that SYM is invariant under local Lorentz transformations, if we consider η(y)

as a scalar function. This is remarkable, because it can be viewed as a re-summation of

a Seiberg-Witten expansion in u(1) from the Moyal-plane point of view, where it would

appear to suffer from Lorentz violation. Therefore predictions and apparent problems for

gauge theories on R
4
θ

due to apparent Lorentz-violation may largely disappear here.

It is fascinating to observe that η(y) takes the place of both the cosmological “constant”

and the axion, which is related to the strong CP problem. To explain that both are

small are outstanding problems. The theory emerging here is expected to have important

consequences on these issues, however this can only be addressed after quantum effects

are taken into account. We will see that the first term in fact should not be interpreted

as cosmological constant, rather it leads to the vacuum equations of motion at tree level

(4.7), (4.19). Very similar actions have been considered from the classical point of view

in [39, 40], however with an independent field replacing η(y).

We also note that (3.34) implies the relation (2π)2N = (2π)2Tr1l =
∫

d4y Λ4
NC(y),

where N is the dimension of the underlying Hilbert space H in the compact case. Therefore

the local scale of noncommutativity can be interpreted as “local” dimension of H per

coordinate volume,

Λ4
NC ∼ (2π)2N

Vol
. (3.37)

Scalar field. Similarly, we want to obtain the classical limit of the scalar action (3.1).

Strictly speaking, we should also use a Seiberg-Witten map for the scalars, in order to get

the correct gauge-invariant classical limit. This is given by

Φ = φ − θabAa∂bφ − 1

4
θab[AaAb, φ] + O(θ2) (3.38)

Noting that

[Xa,Φ] = [Y a + θabAb, φ + O(θ)] = θab(∂bφ + [Ab, φ]) + O(θ2) (3.39)
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we obtain

S[Φ] =

∫

d4y ρ(y) tr Gab(∂bφ + [Ab, φ])(∂bφ + [Ab, φ]) (3.40)

to leading order. Therefore in the scalar case, the correct classical limit is indeed obtained

by the naive analysis leading to (3.4). In particular, we obtain the same effective metric Gab

coupling to both scalar and gauge fields. This is of course essential for an interpretation in

terms of gravity, and resolves an inconsistency for the gauge fields in [31]. Note furthermore

the invariance of (3.40) under Weyl rescaling G → eσ G, which is usually found for the

Yang-Mills sector.

The effective actions (3.36) and (3.40) almost have the standard form of gauge resp.

scalar fields coupled to an external metric Gab, except for the density functions ρ(y) and

η(y) which depend not only on Gab but also on the “background” or closed string metric gab.

If we consider gab as a metric tensor, then these actions are generally covariant. However,

gab is a fixed matrix in the fundamental action (2.1), where it does not make sense to

transform it under a general diffeomorphisms. Thus general covariance arises only in the

effective low-energy action, considering gab as a background metric which enters the Yang-

Mills action only through det gab and η(y). For fixed gab, the Yang-Mills term in (3.36) is

covariant only under volume-preserving diffeomorphisms, and the “would-be topological”

correction term SNC is invariant under diffeomorphisms preserving η(y). This is somewhat

reminiscent of unimodular gravity [41], but more restrictive.

It may be tempting to recover the “missing” density factor in (3.36) by defining a

slowly varying effective gauge coupling for the Yang-Mills sector,

1

G2
YM(y)

= c

(

det gab

det Gab

)1/4

. (3.41)

However this is premature and perhaps misleading at this point, because a similar su(n)

action will be induced at one-loop, which might have a different density factor.

4. Emergent gravity

We have shown so far that the su(n) gauge fields as well as scalar fields couple (almost-)

covariantly to the effective metric Gab. However, we did not yet explain how the Einstein-

Hilbert action or some variation thereof should arise. This appears to be difficult to achieve

in the matrix-model framework, where we can write down only traces of polynomials of the

covariant coordinates Xa. Moreover, adding any gauge-invariant term in the action action

would also affect the su(n) sector which should describe the Yang-Mills action.

We will argue that it is not necessary to add any further terms to the action, rather the

gravitational action arises automatically upon quantization. The idea of induced gravity

due to Sakharov [34] is crucial here; see e.g. [42] for a more recent discussion. However,

the term
∫

ρ(y)η(y) in (3.36) also plays an unexpected role.

Consider the quantization of the noncommutative gauge theory. The definition in terms

of the matrix model actions (2.1) resp. (3.4) provides a clear quantization prescription via

a (path) integral over the matrices Xa. On the other hand, we can use the description in
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terms of the classical actions (3.36) resp. (3.40) at least for low energies, where the classical

fields are coupled covariantly to the effective metric Gab. We can then use the well-known

result that the one-loop effective action contains in particular the Einstein-Hilbert action.

We briefly recall this general mechanism [42]: Consider e.g. a scalar field with action

S[Φ] =
∫

d4y
√

g̃ g̃ab∂aΦ∂bΦ coupled to some background metric g̃. Upon quantization i.e.

integration out φ up to a cutoff ΛUV, the leading term of the one-loop effective action is

essentially given by

S1−loop ∼
∫

d4y
√

g̃
(

c1Λ
4
UV + c2Λ

2
UV R[g̃] + O(log(ΛUV))

)

(4.1)

where R[g̃] is the curvature scalar associated to g̃. It involves the Seeley-de Witt coefficients

determined by the kinetic terms (see [43] §4.8). This is closely related to the spectral action

principle [44], cf. [45, 46] for the Moyal-Weyl case.

Our scalar action (3.40) differs from the generally covariant form through a different

power of det(g̃) in the measure (3.40). This can be cast in the standard form by defining

g̃ab = eσ Gab, eσ = (det Gab)
−1/4 (4.2)

with det g̃ = 1, so that

S[Φ] = c

∫

d4y (detGab)
1/4 Gab∂aΦ∂bΦ = c′

∫

d4y
√

g̃ g̃ab∂aΦ∂bΦ. (4.3)

This reflects the invariance of (3.40) under Weyl scaling. The curvature scalar of g̃ab is

related to the one for Gab by

R[g̃] = e−σ

(

R[G] − 3∆Gσ − 3

2
Gab∂aσ∂bσ

)

(4.4)

where e−σ = det(G)1/4 is somewhat reminiscent of a dilaton, and

∆Gσ = ∇a
G∂aσ = Gab∂a∂bσ − Γc∂cσ . (4.5)

Therefore (4.3) induces in particular the term

S1−loop ∼
∫

d4y det(Gab)
1/4

(

R[G] − 3∆Gσ − 3

2
Gab∂aσ∂bσ

)

Λ2
eff (4.6)

at one-loop. This is just an indication of what should be expected from a more detailed

analysis. The su(n) gauge fields will also induce at one loop terms similar to (4.6).

UV/IR mixing and gravity. It is well-known that the quantization of noncommutative

field theory leads to the so-called UV/IR mixing [28 – 30]. This means in particular that the

effective action contains new divergent terms with momentum dependence ∼ 1
(θp)2

, which

are singular in the infrared and not contained in the bare action. This holds both for gauge

fields and matter fields. Remarkably, the UV/IR mixing for gauge fields is restricted to

the trace-u(1) sector, at least for one loop.
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Our result sheds new light on this phenomenon. We have argued using the semi-

classical description that NC gauge theory induces upon quantization the Einstein-Hilbert

action (4.1) for the effective metric Gab, which is a function of the u(1) gauge fields only,

with divergent coefficients. Since these terms are not contained in the bare action, the

model should not be naively renormalizable as a pure Yang-Mills gauge theory, and should

have new divergences in the trace-u(1) sector (and only there) at one loop. The momentum

dependence of the scalar curvature R (4.18), valid for k ≪ ΛNC, may well be responsible for

the observed IR singularities in the naive u(1) point of view. This shows that the essential

features of the UV/IR mixing fit perfectly in our scenario and are in fact very welcome here.

It remains to be seen how much this rough picture can be substantiated. All of this

underscores the importance of finite versions of NC gauge theory such as [26] which are

now understood as models of Euclidean quantum gravity, and of IR-modified versions such

as [47] which might suppress the gravitational sector.

Furthermore, recall that in the conventional framework, a major problem of induced

gravity is that it induces huge cosmological constants. This problem is not expected to arise

here, because the class of available metrics is restricted; in fact, the term
∫

d4y ρ(y)η(y)

in (3.36) does not play the role of the cosmological “constant”, rather it leads to the vacuum

equations of motion of gravity. These are the equations of motion for the u(1) degrees of

freedom Y a for Fab = 0 = Φ, which are obtained easily from (2.4)

Gac∂c θ−1
ab (y) = 0 . (4.7)

This will imply Rab ∼ 0 in the linearized case (4.19). Furthermore, stability of Euclidean

NC spaces with similar actions as the ones considered here is rather obvious by construc-

tion [26, 48] and has been verified numerically in [49, 50], while geometrical phase transi-

tions do occur. Moreover, flat space (2.5) remains to be a solutions even at one loop. It

therefore seems quite plausible that the picture of gravity emerging from NC gauge theory

may shed new light on the cosmological constant problem.

It remains to clarify the physical meaning of the metric Gab and possible rescaling with

eσ , which is related to ΛNC via (3.34). Furthermore, the precise form of the gravitational

equations of motion should be determined. We will show that at least for small fluctuations

of flat Minkowski space, the resulting gravity theory appears to be a physically acceptable

modification of Einstein gravity.

Relation to previous work on Matrix models and M(atrix) theory. There is

a large body of literature on Matrix-model formulations of string resp. M(atrix) theory.

In particular, the IKKT for IIB string theory [7] is essentially a 10-dimensional super-

symmetric version of the 4-dimensional model under consideration here, while the BFSS

model [5] for M-theory includes an extra “time” dependence. The identification of grav-

ity in these matrix models is of particular interest, and has been studied in a number of

papers including [4 – 11]. What is typically considered are interactions of separated “D-

objects”, represented by block-matrices. A gravitational interaction is then generated at

one loop, i.e. by integrating out off-diagonal blocks, reproducing leading effects of D=10

(super)gravity. However, there is also strong evidence for D=4 graviton propagators for
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D=4 D-brane solutions [9, 11] of this matrix model, which is quite directly related to the

present context. For other aspects see also [14 – 16]. Nevertheless, an explicit identification

of the associated geometries within such matrix models and its relation with gravity has

not been obtained in the literature.

The relation with our approach is as follows. In stringy language, we consider a single

given NC background (a 4-brane, say), and obtain an explicit metric and effective field

theory. While these brane-solutions to the matrix models are typically considered as flat

(or highly symmetric), we point out that they do contain nontrivial metrics and geometry

through their U(1) sector. In a higher-dimensional version, this should also shed new light

on gravity in M(atrix) theory. In agreement with previous work, one-loop effects are found

to be crucial to obtain the gravitational action.

4.1 Geometry, gravitational waves and u(1) gauge fields

In this section we study in more detail the class of geometries available from (3.5). In

particular, we consider the case of small fluctuations around a flat background R
4
θ with

generators Y
a
. This will also clarify the relation with the conventional interpretation in

terms of u(1) gauge fields on the canonical quantum plane R
4
θ.

An arbitrary u(1) component of Xa in (2.7) can be written as

Y a = Y
a

+ θ
ab

A0
b (4.8)

so that

θab(Y ) = [Y a, Y b] = θ
ab

+ θ
ac

θ
bd

F 0
cd (4.9)

where F 0
cd = ∂cA

0
d − ∂dA

0
c + [A0

c , A
0
d] is the abelian field strength on R

4
θ. Therefore the

induced metric can be written in terms of the u(1) gauge fields as

Gab = −θacgcdθ
bd = −(θ

ac
+ θ

ae
θ

ch
F 0

eh)(θ
bd

+ θ
bf

θ
dg

F 0
fg)gcd . (4.10)

Consider first the case of 2 dimensions. Then θ
ab

= εabθ and F 0
ab(y) = εabf(y), therefore

Gab
(2D)(y) = −gab θ

2
(1 − θf(y))2. (4.11)

Since gab is a constant diagonal matrix, the metric is obtained automatically in isother-

mal coordinates, and the y-dependence of the metric is given by the y-dependence of the

u(1) scalar field strength. The latter is an arbitrary function off-shell. Therefore the met-

ric Gab
(2D) describes indeed the most general metric in 2 dimensions with non-vanishing

curvature, in isothermal “gauge-fixing”.

In 4 dimensions, we certainly cannot obtain the most general geometry from the de-

grees of freedom of a u(1) gauge field. However, we will show that one does obtain a class

of metrics which is sufficient to describe the physical (“on-shell”) degrees of freedom of

gravity, more precisely gravitational waves and the Newtonian limit for an arbitrary mass

distribution.

As a first check, note that gravitational waves have 2 physical degrees of freedom (he-

licities), as much as u(1) gauge fields. We should therefore verify whether (4.10) contains
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indeed the 2 physical on-shell degrees of freedom of gravitational waves on Minkowski

space. This was answered positively already in [31] to leading order in θ
ab

, and is reviewed

below for convenience. It strongly supports the physical viability of realizing gravity in

this manner.

Gravitational waves on a flat background. Consider small fluctuations of the met-

ric (4.10) around the metric for R
4
θ

gab := −θ
ac

θ
bd

gcd , (4.12)

which is indeed flat. Keeping only the leading terms, (4.10) simplifies as

Gab =
(

gab + gadθ
bf

F 0
df + gbdθ

af
F 0

df

)

+ O(gθ
2
) . (4.13)

This can be considered as metric fluctuations Gab = gab − hab on flat Minkowski (or

Euclidean) space, leading to gravitational waves determined by

hab = −gadθ
bf

F 0
df − gbdθ

af
F 0

df . (4.14)

For the inverse metric Gab = gab + hab this implies

hab = gbb′θ
b′f

F 0
fa + gaa′θ

a′f
F 0

fb (4.15)

to leading order. This is essentially the metric obtained by Rivelles [31], up to a trace

contribution which arises here from the density ρ(y) (3.34). Therefore the linearized picture

in [31] is recovered here in a complete framework with nontrivial geometry. The linearized

Ricci tensor is found to be

Rab = ∂c∂(bha)c −
1

2
∂c∂chab −

1

2
∂a∂bh

= −θa
f
∂f∂cF 0

cb − θb
f
∂f∂cF 0

ca −
1

2
θa

f
∂c∂cF

0
bf − 1

2
θb

f
∂c∂cF

0
af (4.16)

where indices are raised and lowered with g,

h = habg
ab = 2θ

af
F 0

fa , (4.17)

and

R = θ
af

∂c∂cF
0
af . (4.18)

This agrees (up to sign) with the results of [31], apart from the contributions from the

trace part which enter in a different way. Now consider the tree-level vacuum equations of

motion (4.7), which in the present context amount to ∂aF 0
ab = 0 = ∂c∂cF

0
ab up to possibly

corrections of order θ, i.e. the vacuum Maxwell equations for the flat metric gab. As pointed

out in [31], this implies that the vacuum geometries are Ricci-flat,

Rab = 0 + O(θ2), (4.19)

while the general curvature tensor Rabcd is first order in θ and does not vanish. This

shows that the effective metric does contain the 2 physical degrees of freedom (helicities)
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of gravitational waves. It is quite remarkable that this is obtained at the tree level, without

invoking the mechanism of induced gravity in section 4. Note that there is no cosmological

constant to this order.

For completeness, we check that the Riemann tensor for plane waves is non-zero. To

do this the following form of the metric fluctuations (4.15) is more convenient

hab = θb
f
∂fA0

a + θa
f
∂fA0

b − (∂aA
0
f θb

f
+ ∂bA

0
f θa

f
)

∼= θb
f
∂fA0

a + θa
f
∂fA0

b (4.20)

since the term in brackets has the form ∂aξb + ∂bξa of an infinitesimal diffeomorphism and

therefore can be dropped. Incidentally, observe that the u(1) gauge transformations act as

A0
a → A0

a + ∂aλ(x) in the commutative limit, which leaves hab invariant; however, they do

act as symplectomorphism to order θ, as discussed in section 4.3. Now consider plane-wave

configurations

A0
a = Ea eikx (4.21)

with

hab = i(θb
f
kfEa + θa

f
kfEb) . (4.22)

Using

Γc
ab =

1

2
gcd (∂ahbd + ∂bhad − ∂dhab) , (4.23)

the linearized curvature tensor is

Rabc
d = −i

1

2

(

(kcθ
df − kdθc

f
)kf (kbEa − kaEb) + (kbθa

f − kaθb
f
)kf (kcE

d − kdEc)
)

(4.24)

which is O(θ) and does not vanish even on-shell.

This analysis suggests in particular that gravitons should be interpreted as NC Gold-

stone bosons for the spontaneously broken translational invariance of Xa → Xa + ca, and

gauge bosons as their nonabelian cousins.

4.2 Connection and curvature, examples

The Christoffel symbols obtained from the metric Gab for general θab(y)are

Γc
ab =

1

2
Gcd (∂aGbd + ∂bGad − ∂dGab) (4.25)

which using the Jacobi identity for θ−1
ab can be written as

Γc
ab =

1

2

(

θcf∂aθ
−1
bf + θcf∂bθ

−1
af + Gcd(θ−1

bf gff ′

∂f ′θ−1
ad + θ−1

af gff ′

∂f ′θ−1
bd )

)

. (4.26)

The curvature is given as usual by

Rabc
d = ∂bΓ

d
ac − ∂aΓ

d
bc + Γe

acΓ
d
eb − Γe

bcΓ
d
ea . (4.27)

Inserting (4.26) does not provide very illuminating expressions. Note that θab(y) is in

general not covariantly constant, even though Gab is.

We illustrate the nontrivial geometries emerging from NC spaces with a few examples.
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Manin plane. Consider the Manin plane

xy = qyx (4.28)

with |q| = 1 and hermitian generators x, y. The underlying Poisson structure is

{x, y} = −i(q − q−1)xy =: −iθ(x, y) (4.29)

so that the effective metric induced by the matrix model with background metric gab = δab

resp. gab = ηab would be

ds2 = −(q − q−1)2 x2y2(dx2 ± dy2) . (4.30)

However, keep in mind that the Manin plane might be obtained more naturally from a

different matrix model with different background metric gab, with different Gab.

Newtonian limit. The Newtonian limit of general relativity corresponds to static metric

perturbations of the form

ds2 = −c2dt2
(

1 +
2U

c2

)

+ d~x2

(

1 + O

(

1

c2

))

(4.31)

where ∆(3)U = 4πGρ and ρ is the mass density. We can indeed obtain such metrics for

arbitrary static ρ, as shown in appendix B (B.14). Therefore the class of metrics Gab (3.5)

does contain the required degrees of freedom to describe a physically reasonable gravity

theory. In fact, the degrees of freedom for Gab are precisely those required to describe an

arbitrary mass distribution. This gravity theory is therefore very economical. The Planck

length is identified with Λ−1
NC on dimensional grounds, or via (B.15) which gives G ∼ θ in

appropriate units.

If we us the vacuum equations of motion (4.7) which amounts to ∂cFcb = 0 resp.

Rab = 0 as discussed above, then (B.14) leads to

ds2 = −c2dt2
(

1 +
2U

c2

)

+ d~x2

(

1 − 2U

c2

)

(4.32)

to leading order, as in general relativity. Therefore the leading corrections of general

relativity over Newtonian gravity should be reproduced here.

Schwarzschild metric, rescaled. The Schwarzschild metric can be written in Kruskal

coordinates as

ds2 = r2
(

dϑ2 + sin2(ϑ)dϕ2
)

+
4

r
e−r(du2 − dv2) (4.33)

where u + v =
√

r − 1 e(r+t)/2, u − v =
√

r − 1 e(r−t)/2 and thus u2 − v2 = (r − 1)er. This

can be written as

Gab = r2G̃ab = r2θ−1
aa′θ

−1
bb′ ηa′b′ (4.34)

which almost the desired form (except for the overall scaling factor r2) for the symplectic

form

θ−1
ab dxa ∧ dxb = sin(ϑ)dϑdϕ +

2

r3/2
e−r/2du ∧ dv . (4.35)
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Note that the density factor eσ = (det G̃)1/4 = 2
r3/2

e−r/2 is a function of r only, so that the

(4.33) is indeed obtained by rescaling with a function of σ only. The (r, t) - part of the metric

can easily be generalized as in (4.11). While this illustrates the nontrivial nature of metrics

of the form (3.5), it turns out that this ansatz does not lead to the desired Schwarzschild-like

solution, rather a different ansatz must be used; this will be described elsewhere.

4.3 Coordinates, gauge invariance and symplectomorphisms

From a semiclassical point of view, NC gauge theory provides 2 geometrical structures: 1)

a Poisson structure θab(x) and 2) a “background” (closed string) metric gab, which is used

to contract the indices of the covariant coordinates. We assume here that gab is flat. There

are accordingly 2 special coordinate systems:

1. Darboux coordinates where θab is constant. Then of course the background metric

gab(x) is not given by δab or ηab, but it is still flat.

2. Cartesian coordinates w.r.t. the background metric gab. Then θab(y) is not constant.

These are the ya coordinates used in the present paper.

Observe that Gab is flat if the two coincide, thus NC gravity results in some sense from a

“strain” between Darboux- and g-flat coordinates.

Now consider the gauge symmetries. The matrix-model action (2.1) is invariant under

the NC gauge transformations (2.3). While their su(n) components are clearly the su(n)

gauge transformations of the effective action (3.36), the role of the local u(1) transforma-

tions is less obvious. It is well-known (see e.g. [51]) that u(1) gauge transformations in the

NC case act naturally as symplectomorphisms on the Poisson manifold M, leaving θab(y)

invariant. To see this, consider the gauge transformation of a scalar function φ(y) ∈ A:

φ → φ′ = UφU−1 (4.36)

or infinitesimally

φ → φ′ = φ + i[Λ, φ] (4.37)

for U = eiεΛ. The semi-classical version of this action is φ(y) → φ′(y) = φ(y)+{Λ(y), φ(y)},
which generates the Hamiltonian flow with generator Λ(y) w.r.t. the Poisson structure

θab(y). Therefore u(1) gauge transformations are naturally interpreted as quantization of

the action of the group Symp(M) of symplectomorphisms on M. Due to Liouvilles theo-

rem, Symp(M) is a (proper) subgroup of the group of volume-preserving diffeomorphism.

Now consider the covariant coordinates Xα, which transform as

Xa → Xa′ = U−1XaU. (4.38)

According to the above discussion, this can be interpreted for the u(1) sector as transforma-

tion of the embedding function Xa : M →֒ R
4 under (quantized) Symp(M). However here

Symp(M) does not act on any indices of e.g. nonabelian gauge fields, unlike the standard

action of diffeomorphisms. Nevertheless, since the action is written in terms of classical field
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strength tensors with all indices properly contracted, the classical action appears to be gen-

eral covariant. This is only apparent, however, since gab is a fixed background metric: The

exact invariance group must preserve ρ and η(y), which probably reduces it to Symp(M).

The role of NC gauge transformations and diffeomorphisms certainly deserves further

investigations, see also [32, 52] for related discussion. It remains to be seen whether the

generalized notions of symmetry developed in [17] are applicable in the context of matrix

models.

5. Remarks on the quantization

The great virtue of matrix models such as (2.1) is that there is a clear concept of quan-

tization, defined by integrating over the space of matrices. This has been extremely suc-

cessful for single-matrix models, and was elaborated in the context of NC gauge theory to

some extent [48]. Combined with the results of the present paper, this leads to the hope

that (2.1) may provide a good definition of quantum gravity. The limit N → ∞ of course

remains to be a highly nontrivial issue related to renormalizability. On the other hand,

the finite-dimensional matrix-models for compact “fuzzy” quantum spaces such as [26] are

thus candidates for a regularized (Euclidean) gravity theory.

Furthermore, recall from section 4.2 that our model of NC gravity contains only the

minimal degrees of freedom required to accomodate on-shell gravitational waves plus a mass

distribution. In contrast, general relativity contains many additional off-shell and gauge

degrees of freedom, leading in particular to nontrivial gauge fixing issues upon quantization.

Therefore the gravity theory obtained here should be better suited for quantization.

We support this conjecture with some observations. Due to gauge invariance (2.3),

the effective action after quantization should be given by similar types of matrix models,

involving more complicated expressions of traces of polynomials of the Xa. Due to trans-

lational invariance, they should be expressible in terms of commutators, and therefore - in

some given vacuum - the same analysis as here should establish that they can be inter-

preted as su(n) gauge theory coupled to an effective Gab, to leading order. This suggests

that there should be no disastrous UV/IR mixing effect, which has been absorbed by the

choice of geometric vacuum.

6. Discussion

The basic message of this paper is that gravity is an intrinsic part of the matrix-model

formulation of NC gauge theory. These models describe a dynamical noncommutative

space, with metric determined by the general Poisson structure. This leads to a separation

of the gravity and gauge theory degrees of freedom. Quantum spaces and gravity are

seen as two aspects of the same thing. Matrix models such as (2.1) thus provide a simple

class of models which should be suitable for quantizing gravity along with the other fields.

This clarifies the presence of gravity in string-theoretical matrix models [5, 7], however the

mechanism is more general and applies in particular to 4 dimensions, as elaborated here.

Also, the mechanism of spontaneous generation of fuzzy extra dimensions [36] can now be
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seen from the point of view of gravity. We also point out that the gravitational action

will be induced upon quantization, which should explain and hopefully resolve the UV/IR

mixing in NC gauge theory.

While the physical properties of the emerging gravity theory are not yet worked out,

the simplicity of the mechanism is certainly striking. There remains some freedom for

modification of the action, in particular via extra dimensions, but the mechanism seems

to be quite rigid. In particular, the restricted class of geometries strongly suggests that

the resulting gravity theory is different from general relativity, but consistent with its

low-energy limit. This realizes some of the ideas in [31 – 33], with the aim to understand

gravity as an emergent phenomenon of NC gauge theory in the commutative limit. It is also

reminiscent to ideas in [20], in the sense that gravity is determined by noncommutativity

i.e. the Poisson structure. On the other hand, this is different from other proposals [17]

which aim to define a deformed (noncommutative) version of general relativity.

One may wonder how such a different interpretation of NC gauge theory is possible;

after all, there seems to be nothing wrong with the “old” gauge theory point of view. From

that perspective, what we have done is to perform a Seiberg-Witten map from constant θ
ab

to a general θab(y), to leading order in θab(y) but exact in δθab = θab(y)−θ
ab

(y). This “eats

up” the u(1) gauge fields and moves them into the metric Gab(y). In the conventional gauge

theory point of view, δθab is the u(1) field strength, which decouples from the su(n) gauge

degrees of freedom to leading order but cannot be disentangled exactly. We determined

the precise coupling between these u(1) and su(n) degrees of freedom, and showed that it

should be interpreted as gravitational coupling. This casts the basic observations of [31]

in a complete framework, generalized to notrivial geometries and nonabelian gauge fields.

The basic idea of gravity emerging form NC gauge theory was also put forward in [32, 33],

in a somewhat different approach without identifying the metric (3.5).

There are many further directions to explore. First, the main results of this paper also

apply to dimension different from 4, and should generalize in particular to the case of NC

“submanifolds” embedded in higher dimensions. Then the closed string metric gab is the

induced metric on the submanifold, and no longer flat in general. Therefore the class of

effective metrics obtained in this case may be larger. Notice also that extra dimensions can

be viewed as additional (possibly interacting) scalars as in (3.1); a particularly interesting

example would be the matrix model for N = 4 NCSYM considered e.g. in [9, 11]. Other

types of matrix model actions should also be explored, such as DBI-like actions. Fermions

should of course be included in these models, which will be studied elsewhere. This will also

allow to study the relation with the framework of the spectral action [44]. The quantization

and loop effects should be worked out. Finally, it is of course essential to explore the

physical viability of this NC gravity.
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A. Derivation of the effective action to leading order

To shorten the notation we only consider the Euclidean case gab = δab here, and adopt

a notation where repeated indices are summed irrespective of their position; for example,

θabθab ≡ ∑

a,b θabθab. The Minkowski case is obtained by obvious replacements.

Furthermore, we adopt the convention in this appendix to rise and lower indices with

θab resp. θ−1
ab rather than the metric, e.g. Aa = θab Ab.

Useful identities

The “commutative” field strength is defined by

F ab = θacθbdFcd = θacθbd(∂cAd − ∂dAc) + θacθbd[Ac, Ad]

= θbd[Y a, Ad] − θac[Y b, Ac] + θacθbd[Ac, Ad] (A.1)

while we define the “noncommutative” field strength as

Fab = [Xa,Xb] − θab = [Y a,Ab] − [Y b,Aa] + [Aa,Ab]

= [Xa,Ab] − [Xb,Aa] − [Aa,Ab] . (A.2)

The leading terms are

Fab = [Y a, Adθ
bd] − [Y b, Adθ

ad] + [Aa, Ab]

= F ab + ([Y a, θbd] − [Y b, θad])Ad + [Adθ
ad, Aeθ

be] − θadθbe[Ad, Ae]

= F ab − Ad[Y
d, θab] + [Aa, Ab] − θaa′

θbe′ [Aa′ , Ae′ ] (A.3)

up to corrections of order O(θ3), hence omitting Fab
SW,2 here.

A useful identity is

2θab[Y a, [Y b,X]] = θab([Y a, [Y b,X]] − [Y b, [Y a,X]]) = θab[θab,X] . (A.4)

A similar identity is the following:

θab[Y a, θcb] = −θab[Y c, θba] − θab[Y b, θac]

= −θab[Y c, θba] + θab[Y a, θbc]

therefore

θab[Y a, θcb] =
1

2
θab[Y c, θab] . (A.5)

In particular,

θabAcAd[Y
d, [Y a, θcb]] =

1

2
θabAcAd[Y

d, [Y c, θab]] . (A.6)
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Bianci identity and applications. The noncommutative Bianci identity for F is ob-

tained from

[Xa,Fbc] + [Xb,Fca] + [Xc,Fab] = −[Xa, θbc] − [Xb, θca] − [Xc, θab]

= −[Aa, θbc] − [Ab, θca] − [Ac, θab] . (A.7)

Together with the antisymmetry of θab, it follows that

θab[Xa,Fcb] = θab
(

−[Xc,Fba] − [Xb,Fac] − [Aa, θcb] − [Ab, θac] − [Ac, θba]
)

= θab
(

−[Xc,Fba] − [Xa,Fcb] − [Aa, θcb] − [Aa, θcb] + [Ac, θab]
)

(A.8)

which implies

θab[Xa,Fcb] =
1

2
θab([Xc,Fab] + [Ac, θab]) − θab[Aa, θcb] . (A.9)

Using [Y c, Ab] + [Ac, Ab] = Fcb + [Y b, Ac] this gives

θab[Xa, [Y c, Ab] + [Ac, Ab]]] = θab[Xa,Fcb] + θab[Xa, [Y b, Ac]]

=
1

2
θab([Xc,Fab] + [Ac, θab]) + θab[Y a, [Y b, Ac]]

+θab[Aa, [Y b, Ac]] − θab[Aa, θcb]

=
1

2
θab([Xc,Fab] + [Ac, θab]) +

1

2
θab[θab, Ac]

+θab[Aa, [Y b, Ac]] − θab[Aa, θcb]

= θab

(

1

2
[Xc,Fab] + [Y a, [Ac, Ab]] − [Ac, [Aa, Y b]] − [Aa, θcb]

)

so that

θab[Xa, [Y c, Ab]] =
1

2
θab[Xc,Fab] − θab[Ac, [Aa, Y b]] − θab[Aa, [Ac, Ab]] − θab[Aa, θcb]

which using

θab[Aa, [Ac, Ab]] = −θab[Ac, [Ab, Aa]] + θab[Aa, [Ab, Ac]] (A.10)

thus

θab[Aa, [Ac, Ab]] =
1

2
θab[Ac, [Aa, Ab]] (A.11)

gives

θab[Xa, [Y c, Ab]] =
1

2
θab[Xc,Fab] − θab[Ac, [Aa, Y b]] − 1

2
θab[Ac, [Aa, Ab]] − θab[Aa, θcb]

=
1

2
θab[Xc,Fab] − 1

2
θab[Ac, F ab] − θab[Aa, θcb] . (A.12)
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Other useful relations. Here we collect some identities which hold up to some required

order or θ.

Let us introduce the notation

[Ya, f ] := θ−1
ab [Y b, f ] = ∂af + O(θ) (A.13)

which allows to write

[Y a, f ][Ya, g] = θab∂bf∂ag = −i{f, g} + O(θ2) (A.14)

to leading order, which in the abelian case coincides with −[f, g] + O(θ2). This gives

θab[Xa, Ac](F
cb+[Y c, Ab]) = θab(F a

c + [Yc, Ae]θ
ae)(F cb + [Y c, Ab])

= θab(F a
cF

cb+[Yc, Ae]θ
ae[Y c, Ab]+F a

c[Y
c, Ab] + F cb[Yc, Ae]θ

ae)

=θab(F a
cF

cb + θaei{Ae, A
b} − F cbAe[Yc, θ

ae])

= θabF adθ−1
dc F bc + θabF adθ−1

dc Ae[Y
c, θeb] + θabθaei{Ae, A

b}(A.15)

up to O(θ4). Similarly, one finds

θab(Ad[X
a, Ac][Y

c, θdb] + F adθ−1
dc Ae[Y

c, θeb]) = θabAd([X
a, Ac] − F a

c)[Y
c, θdb])

= θabAd[Yc, Ae]θ
ae[Y c, θdb]

∼ θabθaeAd[Ae, θ
db] . (A.16)

To evaluate the contributions cubic in A, we will need

TrθabθabAd[Fcd, Ac] = −Trθabθab[Ad, Ac]Fcd

= −Trθabθab[Ad, Ac]([Y
c, Ad] − [Y d, Ac] + [Ac, Ad])

= −Trθabθab[Ad, Ac](2[Y
c, Ad] + [Ac, Ad]) . (A.17)

The first term gives

Trθabθab[Ad, Ac][Y
c, Ad] = Tr − θabθabAd[[Y

c, Ad], Ac]

= TrθabθabAd([[A
d, Ac], Y

c] + [[Ac, Y
c], Ad])

= Trθabθab(−[Ad, Y
c][Ad, Ac] − [Ad, A

d][Ac, Y
c]) . (A.18)

To proceed, consider

Trθabθab[Ad, Y c][Ad, Ac] = Trθabθab[θdeAe, Y
c][Ad, Ac]

= Trθabθab([θde, Y c]Ae + [Ae, Y
c]θde)[Ad, Ac]

= Trθabθab([θde, Y c]Ae[Ad, Ac] − [Ae, Y
c][Ae, Ac])

= −Trθabθab[Ae, Y
c][Ae, Ac] (A.19)

dropping terms of order O(θ5) and using (A.21) below, which can be obtained by consid-

ering

Trθabθab[Ac, Ad]Ae[Y
e, θcd] = Trθabθab[Ac, Ad]Ae(−[Y c, θde] + [Y d, θce])

= −2Trθabθab[Ac, Ad]Ae[Y
c, θde]

= −2Trθabθab[Ad, Ae]Ac[Y
c, θde], (A.20)
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routinely dropping terms of the type Trθ4 f(x)[Aa, Ab]n.a. under the trace. This implies

that

Trθabθab[Ac, Ad]Ae[Y
e, θcd] = Trθabθab[Ac, Ad]Ae[Y

c, θde] = 0 . (A.21)

Therefore (A.18) gives

Trθabθab[Ad, Ac][Y
c, Ad] = Trθabθab(−[Y c, Ad][Ad, Ac] − [Ad, A

d][Ac, Y
c]) (A.22)

which implies

Trθabθab[Ad, Ac][Y
c, Ad] = −1

2
Trθabθab[Ad, Ad][Y

c, Ac] . (A.23)

Similarly,

−Trθabθab[Ad, Ac][A
c, Ad] = TrθabθabAc[Ad, [A

c, Ad]]

= TrθabθabAc(−[Ac, [Ad, Ad]] − [Ad, [Ad, A
c]])

= Trθabθab([Ac, Ac][A
d, Ad] + [Ad, Ac][Ad, A

c])

= Trθabθab([Ac, Ac][A
d, Ad] − [Ad, Ac][A

d, Ac]) (A.24)

implies

Trθabθab[Ad, Ac][A
c, Ad] = −1

2
Trθabθab[Ac, Ac][A

d, Ad] . (A.25)

Putting this together, (A.17) can be written as

TrθabθabAd[Fcd, Ac] =
1

2
Trθabθab(2[Ad, Ad][Y

c, Ac] + [Ac, Ac][A
d, Ad]) . (A.26)

Evaluation of the contributions

second-order Seiberg-Witten contribution

Let us write the second-order Seiberg-Witten contributions (3.22):

SSW,2 = 2Trθab[Xa, Ac([Y
c, Ab] + F cb)]

= 2Trθab
(

[Xa, Ac](F
cb + [Y c, Ab]) + Ac[X

a, (Fcb + [Y c, Ab] + Ad[X
d, θcb])]

)

= 2Trθab
(

[Xa, Ac](F
cb + [Y c, Ab]) + Ac[X

a, (Fcb + [Y c, Ab] + Ad[X
d, θcb])]

)

where we used (A.3)

Fab = F ab − Ad[Y
d, θab] + O(θ3), (A.27)

noting (3.23). The second line can be simplified using (A.12)

θab[Xa, [Y c, Ab]] =
1

2
θab[Xc,Fab] − 1

2
θab[Ac, F ab] − θab[Aa, θcb] (A.28)

and (A.9)

θab[Xa,Fcb] =
1

2
θab([Xc,Fab] + [Ac, θab]) − θab[Aa, θcb] (A.29)
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so that

SSW,2 = Trθab
(

2[Xa, Ac](F
cb + [Y c, Ab])

+2Ac[X
c,Fab] − Acθ

ab[Ac, F ab] + Ac[A
c, θab] − 4Ac[A

a, θcb]

+2Ac[X
a, Ad][Y

d, θcb] + 2AcAd[X
a, [Xd, θcb]]

)

. (A.30)

Now

θabAcAd[Y
a, [Y d, θcb]] = θabAcAd[Y

d, [Y a, θcb]] + θabAcAd[θ
ad, θcb]

=
1

2
TrθabAcAd[Y

d, [Y c, θab]] + θabAcAd[θ
ad, θcb] (A.31)

using (A.6), which implies

θabAcAd[X
a, [Xd, θcb]] =

1

2
TrθabAcAd[X

d, [Xc, θab]] + θabAcAd[θ
ad, θcb] + O(θ5) (A.32)

hence

SSW,2 = Trθab
(

2[Y a, Ac](F
cb + [Y c, Ab])

+2Ac[X
c,Fab] − Acθ

ab[Ac, F ab] + Ac[A
c, θab] − 4Ac[A

a, θcb]

+2Ad[X
a, Ac][Y

c, θdb]+AcAd[X
d, [Xc, θab]]+2AcAd[θ

ad, θcb]
)

.(A.33)

The first line can be written using (A.15) which gives

SSW,2 = Trθab
(

2F adθ−1
dc F bc + 2F adθ−1

dc Ae[Y
c, θeb] + 2θaei{Ae, A

b}
+2Ac[X

c,Fab] − Acθ
ab[Ac, F ab] + Ac[A

c, θab] − 4Ac[A
a, θcb]

+2Ad[X
a, Ac][Y

c, θdb] + AcAd[X
d, [Xc, θab]] + 2AcAd[θ

ad, θcb]
)

. (A.34)

Now using (A.16) this becomes

SSW,2 = Trθab
(

2F adθ−1
dc F bc + 2θaei{Ae, A

b} + 2θaeAd[Ae, θ
db]

+2Ac[X
c,Fab] − Acθ

ab[Ac, F ab] + Ac[A
c, θab] − 4Ac[A

a, θcb]

+AcAd[X
d, [Xc, θab]] + 2AcAd[θ

ad, θcb]
)

.

Replacing Trθabθaei{Ae, A
b} → Trθabθae[Ae, A

b] and noting

θab
(

θae[Ae, A
b] + θaeAd[Ae, θ

db] − 2Ac[A
a, θcb] + AcAd[θ

ad, θcb]
)

= θab
(

θad[Ad, A
b] + θadAc[Ad, θ

cb] − 2Ac[A
a, θcb] + Ac[Adθ

ad, θcb] − θadAc[Ad, θ
cb]

)

= θabθad[Ad, A
b] − θabAc[A

a, θcb]

= θabθad[Ad, A
b] − θabAd[θ

da, Ab]

= θab[Aa, Ab] (A.35)

– 26 –



J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

(note: only the abelian component involving the Poisson bracket contributes) and

Tr
(

Acθ
ab[Ac, F ab]

)

= −Tr
(

[Ac, Ac]θ
abF ab

)

(A.36)

(since only the nonabelian terms survive), we obtain

SSW,2 = Trθab
(

2F adθ−1
dc F bc + 2[Aa, Ab] + Ac[A

c, θab]

+2Ac[X
c,Fab] + [Ac, Ac]θ

abF ab + AcAd[X
d, [Xc, θab]]

)

. (A.37)

Now we use

Ac[X
c,Fab] = Ac[X

c, F ab − Ad[Y
d, θab]]

= Ac[X
c, F ab] − Ac[X

c, Ad[Y
d, θab]]

= Ac[X
c, F ab] − Ac[X

c, Ad[X
d, θab]] (A.38)

(to O(θ4)) using (A.3), and obtain

SSW,2 = Trθab
(

2F adθ−1
dc F bc + 2θab[Aa, Ab] + 2Ac[X

c, F ab] + [Ac, Ac]θ
abF ab + Ac[A

c, θab]

+AcAd[X
d, [Xc, θab]] − 2Ac[X

c, Ad[X
d, θab]]

)

. (A.39)

Using partial integration, we have

TrθabAd[X
d, Ac[X

c, θab]] = −TrAd[X
d, θab]Ac[X

c, θab]− Trθab[Xd, Ad]Ac[X
c, θab] (A.40)

and

TrθabAcAd[X
d, [Xc, θab]] = TrθabAd[X

d, Ac[X
c, θab]] − TrθabAd[X

d, Ac][X
c, θab]

= Tr − θab[Xd, Ad]Ac[X
c, θab] − [Xd, θab]AdAc[X

c, θab]

−TrθabAd[X
d, Ac][X

c, θab]

therefore

Tr − 2θabAd[X
d, Ac[X

c, θab]] + θabAcAd[X
d, [Xc, θab]]

= TrAd[X
d, θab]Ac[X

c, θab] + θab[Xd, Ad]Ac[X
c, θab] − θabAd[X

d, Ac][X
c, θab] .

Consider the term

−2TrθabAd[X
d, Ac][X

c, θab] = Trθab[Xc, Ad][X
d, Ac]θ

ab + θabθabAd[X
c, [Xd, Ac]]

= Trθab[Xc, Ad][X
d, Ac]θ

ab + θabθabAd[X
d, [Xc, Ac]]

+θabθabAd[(θ
cd + Fcd), Ac]

= Trθab[Xc, Ad][X
d, Ac]θ

ab − θabθab[Xd, Ad][X
c, Ac]

−2θabAd[X
d, θab][Xc, Ac] + θabθabAd[(θ

cd + Fcd), Ac]

(using partial integration again), which gives

−TrθabAd[X
d, Ac][X

c, θab] + θabAd[X
d, θab][Xc, Ac]

= Tr
1

2
θab[Xc, Ad][X

d, Ac]θ
ab − 1

2
θabθab[Xd, Ad][X

c, Ac] +
1

2
θabθabAd[(θ

cd + Fcd), Ac]
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and we obtain

Tr − 2θabAd[X
d, Ac[X

c, θab]] + θabAcAd[X
d, [Xc, θab]]

= TrAd[X
d, θab]Ac[X

c, θab] +
1

2
θab[Xc, Ad][X

d, Ac]θ
ab − 1

2
θabθab[Xd, Ad][X

c, Ac]

+
1

2
θabθabAd[(θ

cd + Fcd), Ac] . (A.41)

Inserting this into (A.39) and using

Tr

(

θabAc[A
c, θab] − 1

2
θabθabAc[θ

cd, Ad]

)

= Tr

(

θabAd[A
d, θab] +

1

2
θabθab[Ad, Ad] +

1

2
θabθabθcd[Ac, Ad]

)

= Tr

(

1

2
θabθabθcd[Ac, Ad]

)

(A.42)

(again only the abelian contribution from the Poisson-bracket survives) gives

SSW,2 = Tr
(

2θabF adθ−1
dc F bc + 2θab[Aa, Ab] + 2θabAc[X

c, F ab] + [Ac, Ac]θ
abF ab

+
1

2
θabθabAd[Fcd, Ac] + Ad[X

d, θab]Ac[X
c, θab]

+
1

2
θabθab([Xd, Ac][X

c, Ad] − [Xd, Ad][X
c, Ac] + θcd[Ac, Ad])

)

.

(A.43)

Now observe that

[Y c, Ad][Y
d, Ac] − θcd[Ad, Ac] = θciθdj∂iAd∂jAc − θcdθij∂iAd∂jAc − θcd[Ad, Ac]n.a. (A.44)

where [Ad, Ac]n.a. stands for commutator of the nonabelian components. We can drop

terms of the type Trθ4 f(x)[Aa, Ab]n.a. under the trace. Therefore

[Xc, Ad][X
d, Ac] − θcd[Ad, Ac] = θciθdj(∂iAd + [Ai, Ad])(∂jAc + [Aj , Ac]) − θcdθij∂iAd∂jAc

= θciθdj
(

∂iAd∂jAc + ∂iAd[Aj , Ac]

+[Ai, Ad]∂jAc + [Ai, Ad][Aj , Ac] − ∂dAi∂jAc

)

= −1

2
θcdθijFidFjc −

1

2
θcdθij[Ai, Ad][Aj , Ac] (A.45)

since θciθdj[Aj , Ac]∂iAd = θciθdj[Ai, Ad]∂jAc under the trace. Furthermore,

[Y a, Aa] = θab∂bAa = −1

2
θab(∂aAb − ∂bAa) (A.46)

and therefore

[Xa, Aa] = −1

2
θab(∂aAb − ∂bAa) + θab[Ab, Aa]

= −1

2
θab(Fab + [Aa, Ab]) (A.47)
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or

2θab[Xc, Ac]F
ab − [Ac, Ac]θ

abF ab = −θcdFcdθ
abF ab (A.48)

hence

SSW,2 = Tr
(

2θabF adθ−1
dc F bc + 2θab[Aa, Ab] + 2θabAc[X

c, F ab] + [Ac, Ac]θ
abF ab

+
1

2
θabθabAd[Fcd, Ac] + Ad[X

d, θab]Ac[X
c, θab]

−1

8
θabθabθcdθij

(

FcdFij + 2FidFjc + 2Fcd[Ai, Aj ]
))

(A.49)

where we used

Trθabθabθcdθij
(

2[Ai, Ad][Aj , Ac] + [Ai, Aj ][Ac, Ad]
)

= −Trθabθabθcdθij
(

2Ai[[Aj , Ac], Ad] + Ai[[Ac, Ad], Aj ]
)

= −Trθabθabθcdθij
(

2Ai[[Aj , Ac], Ad] − Ai[[Ad, Aj ], Ac] − Ai[[Aj , Ac], Ad]
)

= 0 .

Together with (3.24), we obtain

S = −Tr
(

F abF ab − 2F abAc[Y
c, θab] + Ac[Y

c, θab][Y d, θab]Ad + 2θab[Aa, Ab]
)

+ SSW,2

= −Tr
(

F abF ab − 2F abAc[X
c, θab] + Ac[X

c, θab][Xd, θab]Ad + 2θab[Aa, Ab]
)

+ SSW,2 .

Replacing Y → X which is correct to O(θ4), we obtain

S = −Tr
(

F abF ab + 2Ac[X
c, F ab]θab + 2θab[Xc, Ac]F

ab + [Xc, θab]Ac[X
d, θab]Ad

+2Trθab[Aa, Ab]
)

+ SSW,2

= −Tr
(

F abF ab − θabF abθcdFcd − 2θabF adθ−1
dc F bc (A.50)

+
1

8
θabθabθcdθij

(

FcdFij + 2FidFjc + 2Fcd[Ai, Aj ]
)

− 1

2
θabθabAd[Fcd, Ac]

)

.

Finally we use (A.26) together with (A.48) which gives

TrθabθabAd[Fcd, Ac] =
1

2
Trθabθabθij[Ai, Aj ]θ

cdFcd (A.51)

and we obtain the gauge invariant action

S = −Tr
(

F abF ab − θabF abθcdFcd − 2θabF adθ−1
dc F bc +

1

8
θabθabθcdθij(FcdFij + 2FidFjc)

)

= −TrF abF ab + SNC (A.52)

Needless to say that there should be a simpler way to obtain this.
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B. Newtonian metric

We want to reproduce the metric (4.31) in terms of hij (4.20). Fab is a function of

(y0, y1, y2, y3) with ηab = (−1, 1, 1, 1) and has the form

Fab =











0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0











. (B.1)

We can assume that θab = θ











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











, which gives

hab = θ−1











2E3 −B2 − E2 B1 + E1 0

−B2 − E2 −2B3 0 B1 − E1

B1 + E1 0 −2B3 B2 − E2

0 B1 − E1 B2 − E2 −2E3











(B.2)

and gab = θ−2(−1,−1,−1, 1), so that y3 turns into the time t. Since we want the metric

to be static i.e. time-independent and invariant under time reflections, we consider an

electromagnetic field which is independent of y3, ∂3Fab = 0, and require

B1 = E1, B2 = E2. (B.3)

Then

hab = 2θ−1











E3 −E2 E1 0

−E2 −B3 0 0

E1 0 −B3 0

0 0 0 −E3











(B.4)

where as usual Ei and Bi can be written in the form

Ei = ∂0Ai − ∂iA0, Bi = εijk ∂jAk (B.5)

and the derivatives are w.r.t. ya. The Bianci identities are

∂iBi = 0, εijk ∂jEk − ∂0Bi = 0 . (B.6)

Since we want to consider static configurations we have ∂3B3 = 0 (recall t = y3), hence

∂1B1 + ∂2B2 = 0. (B.7)

Now fix the gauge by setting A3 = 0 (cf. axial gauge). Then

B1 = −∂3A2, B2 = ∂3A1, E3 = −∂3A0 , (B.8)
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which can be solved for arbitrary B1, B2, E3 satisfying the Bianci identities by

A2 = −y3B1(y
0, y1, y2) + Ã2(y

0, y1, y2),

A1 = y3B2(y
0, y1, y2) + Ã1(y

0, y1, y2),

A0 = −y3E3(y
0, y1, y2) + Ã0(y

0, y1, y2) (B.9)

with arbitrary Ã0,1,2(y
0, y1, y2). Then E1, E2 can be computed as

E1 = −∂1Ã0 + ∂0Ã1,

E2 = −∂2Ã0 + ∂0Ã2, (B.10)

where the y3-dependent terms vanish due to the Bianci identity.

The most general Bi satisfying (B.7) can be written as

B1 = ∂2φ, B2 = −∂1φ (B.11)

for any given φ(y0, y1, y2). Setting φ = ∂0ϕ and defining Ã0 = 0, Ã1 = ∂2ϕ, Ã2 = −∂1ϕ

we get indeed E1 = B1, E2 = B2 and

B3 = ∂1Ã2 − ∂2Ã1 = −∆12ϕ. (B.12)

E3 is almost determined by the Bianci identity, which is solved by

E3 = ∂0φ = ∂2
0ϕ . (B.13)

Now perform a change of variables ya′ = ya + θξa with ξa = 2(φ, 0, 0, 0), which gives

h′
ab = 2θ−1











−E3 0 0 0

0 −B3 0 0

0 0 −B3 0

0 0 0 −E3











. (B.14)

Assuming that O(B3) ≈ O(∂0φ), this describes Newtonian gravity with gravitational po-

tential given by

U(y0, y1, y2) = θE3 = θ∂2
0ϕ (B.15)

which is arbitrary since U is arbitrary. It can therefore describe an arbitrary static mass

distribution ρ by solving the Poisson equation

∆(3)U = 4πGρ, (B.16)

which is expected to follow from the gravity action. For the vacuum ρ = 0, and E3 = B3

follows from ∆(3)ϕ = 0 (up to a constant), in agreement with general relativity.
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C. Computation of η(y)

One way to show (3.28) is to note that

(θ̃ ∧ θ)ijkl = (θ̃ijθkl − θ̃ilθkj − θ̃ljθki) + (θ̃klθij − θ̃kjθil − θ̃kiθlj) (C.1)

and to consider

(θ−1 ∧ θ−1)ijkl(θ̃ ∧ θ)ijkl = (θ−1 ∧ θ−1)ijklθ̃
ijθkl

= (θ−1
ij θ−1

kl − θ−1
il θ−1

kj − θ−1
lj θ−1

ki )θ̃ijθkl

= (θ−1
ij θ̃ij)(θ−1

kl θkl) + 2(θ−1
il θ−1

jk θ̃ijθkl)

= (d − 2)θjsθsj = (d − 2)Gabgab (C.2)

where d = 4 is the dimension of space(time). On the other hand,

(θ−1 ∧ θ−1)ijkl(θ ∧ θ)ijkl = (θ−1
ij θij)(θ−1

kl θkl) + 2(θ−1
il θ−1

jk θijθkl) = d(d − 2) (C.3)

which together implies (3.28).

References

[1] S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the

Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037].

[2] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001)

977 [hep-th/0106048];

R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207

[hep-th/0109162].

[3] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

[hep-th/9908142].

[4] D. Kabat and W. Taylor, Linearized supergravity from matrix theory, Phys. Lett. B 426

(1998) 297 [hep-th/9712185];

W. Taylor and M. Van Raamsdonk, Supergravity currents and linearized interactions for

matrix theory configurations with fermionic backgrounds, JHEP 04 (1999) 013

[hep-th/9812239].

[5] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M-theory as a matrix model: a

conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043].

[6] D. Bigatti and L. Susskind, Review of matrix theory, hep-th/9712072.

[7] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as

superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115].

[8] H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000)

176 [hep-th/9908141].

[9] N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa, String scale in noncommutative Yang-Mills,

Nucl. Phys. B 583 (2000) 159 [hep-th/0004038].

– 32 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C172%2C187
http://arxiv.org/abs/hep-th/0303037
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C73%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C73%2C977
http://arxiv.org/abs/hep-th/0106048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C378%2C207
http://arxiv.org/abs/hep-th/0109162
http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://arxiv.org/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB426%2C297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB426%2C297
http://arxiv.org/abs/hep-th/9712185
http://jhep.sissa.it/stdsearch?paper=04%281999%29013
http://arxiv.org/abs/hep-th/9812239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C5112
http://arxiv.org/abs/hep-th/9610043
http://arxiv.org/abs/hep-th/9712072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB498%2C467
http://arxiv.org/abs/hep-th/9612115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB565%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB565%2C176
http://arxiv.org/abs/hep-th/9908141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB583%2C159
http://arxiv.org/abs/hep-th/0004038


J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

[10] Y. Kimura and Y. Kitazawa, Supercurrent interactions in noncommutative Yang-Mills and

IIB matrix model, Nucl. Phys. B 598 (2001) 73 [hep-th/0011038].

[11] Y. Kitazawa and S. Nagaoka, Graviton propagators in supergravity and noncommutative

gauge theory, Phys. Rev. D 75 (2007) 046007 [hep-th/0611056]; Graviton propagators on

fuzzy G/H , JHEP 02 (2006) 001 [hep-th/0512204].

[12] H. Kawai and M. Sato, Perturbative vacua from IIB matrix model, arXiv:0708.1732.

[13] M. Hanada, H. Kawai and Y. Kimura, Describing curved spaces by matrices, Prog. Theor.

Phys. 114 (2006) 1295 [hep-th/0508211].

[14] Y. Okawa and H. Ooguri, How noncommutative gauge theories couple to gravity, Nucl. Phys.

B 599 (2001) 55 [hep-th/0012218].

[15] A. Dhar and Y. Kitazawa, Non-commutative gauge theory, open Wilson lines and closed

strings, JHEP 08 (2001) 044 [hep-th/0106217].

[16] H. Liu and J. Michelson, Supergravity couplings of noncommutative D-branes, Nucl. Phys. B

615 (2001) 169 [hep-th/0101016].

[17] P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Noncommutative geometry and gravity,

Class. and Quant. Grav. 23 (2006) 1883 [hep-th/0510059];

P. Aschieri et al., A gravity theory on noncommutative spaces, Class. and Quant. Grav. 22

(2005) 3511 [hep-th/0504183].

[18] V.P. Nair, The Chern-Simons one-form and gravity on a fuzzy space, Nucl. Phys. B 750

(2006) 321 [hep-th/0605008].

[19] X. Calmet and A. Kobakhidze, Noncommutative general relativity, Phys. Rev. D 72 (2005)

045010 [hep-th/0506157];

A. Kobakhidze, Theta-twisted gravity, hep-th/0603132.

[20] J. Madore, An introduction to noncommutative differential geometry and physical

applications, Lond. Math. Soc. Lect. Note Ser. 257 (2000) 1;

J. Madore and J. Mourad, Quantum space-time and classical gravity, J. Math. Phys. 39

(1998) 423 [gr-qc/9607060].

[21] M.A. Cardella and D. Zanon, Noncommutative deformation of four dimensional Einstein

gravity, Class. and Quant. Grav. 20 (2003) L95 [hep-th/0212071].

[22] E. Langmann and R.J. Szabo, Teleparallel gravity and dimensional reductions of

noncommutative gauge theory, Phys. Rev. D 64 (2001) 104019 [hep-th/0105094].

[23] R.J. Szabo, Symmetry, gravity and noncommutativity, Class. and Quant. Grav. 23 (2006)

R199 [hep-th/0606233].

[24] S. Kurkcuoglu and C. Saemann, Drinfeld twist and general relativity with fuzzy spaces, Class.

and Quant. Grav. 24 (2007) 291 [hep-th/0606197].

[25] P. Mukherjee and A. Saha, Comment on the first order noncommutative correction to gravity,

Phys. Rev. D 74 (2006) 027702 [hep-th/0605287];

R. Banerjee, P. Mukherjee and S. Samanta, Lie algebraic noncommutative gravity, Phys. Rev.

D 75 (2007) 125020 [hep-th/0703128].

– 33 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB598%2C73
http://arxiv.org/abs/hep-th/0011038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C046007
http://arxiv.org/abs/hep-th/0611056
http://jhep.sissa.it/stdsearch?paper=02%282006%29001
http://arxiv.org/abs/hep-th/0512204
http://arxiv.org/abs/0708.1732
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1295
http://arxiv.org/abs/hep-th/0508211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB599%2C55
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB599%2C55
http://arxiv.org/abs/hep-th/0012218
http://jhep.sissa.it/stdsearch?paper=08%282001%29044
http://arxiv.org/abs/hep-th/0106217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB615%2C169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB615%2C169
http://arxiv.org/abs/hep-th/0101016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C1883
http://arxiv.org/abs/hep-th/0510059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C3511
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C3511
http://arxiv.org/abs/hep-th/0504183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB750%2C321
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB750%2C321
http://arxiv.org/abs/hep-th/0605008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C045010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C045010
http://arxiv.org/abs/hep-th/0506157
http://arxiv.org/abs/hep-th/0603132
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMSSD%2C257%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C39%2C423
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C39%2C423
http://arxiv.org/abs/gr-qc/9607060
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CL95
http://arxiv.org/abs/hep-th/0212071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C104019
http://arxiv.org/abs/hep-th/0105094
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2CR199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2CR199
http://arxiv.org/abs/hep-th/0606233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C291
http://arxiv.org/abs/hep-th/0606197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C027702
http://arxiv.org/abs/hep-th/0605287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C125020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C125020
http://arxiv.org/abs/hep-th/0703128


J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

[26] W. Behr, F. Meyer and H. Steinacker, Gauge theory on fuzzy S2 × S2 and regularization on

noncommutative R4, JHEP 07 (2005) 040 [hep-th/0503041];

H. Grosse and H. Steinacker, Finite gauge theory on fuzzy CP 2, Nucl. Phys. B 707 (2005)

145 [hep-th/0407089].

[27] Y. Kitazawa, Matrix models in homogeneous spaces, Nucl. Phys. B 642 (2002) 210

[hep-th/0207115].

[28] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics,

JHEP 02 (2000) 020 [hep-th/9912072].

[29] M. Hayakawa, Perturbative analysis on infrared and ultraviolet aspects of noncommutative

QED on R4, hep-th/9912167.

[30] A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the non-commutative

gauge theories, JHEP 12 (2000) 002 [hep-th/0002075].

[31] V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191

[hep-th/0212262].

[32] H.S. Yang, Exact Seiberg-Witten map and induced gravity from noncommutativity, Mod. Phys.

Lett. A 21 (2006) 2637 [hep-th/0402002]; On the correspondence between noncommuative

field theory and gravity, Mod. Phys. Lett. A 22 (2007) 1119 [hep-th/0612231];

Noncommutative electromagnetism as a large-N gauge theory, arXiv:0704.0929.

[33] R. Banerjee and H.S. Yang, Exact Seiberg-Witten map, induced gravity and topological

invariants in noncommutative field theories, Nucl. Phys. B 708 (2005) 434

[hep-th/0404064].

[34] A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation,

Sov. Phys. Dokl. 12 (1968) 1040 [Dokl. Akad. Nauk Ser. Fiz. 177 (1967) 70] [Sov. Phys. Usp.

34 (1991) 394].

[35] J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces,

Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203].

[36] P. Aschieri, T. Grammatikopoulos, H. Steinacker and G. Zoupanos, Dynamical generation of

fuzzy extra dimensions, dimensional reduction and symmetry breaking, JHEP 09 (2006) 026

[hep-th/0606021];

H. Steinacker and G. Zoupanos, Fermions on spontaneously generated spherical extra

dimensions, JHEP 09 (2007) 017 [arXiv:0706.0398].

[37] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66

(2003) 157 [q-alg/9709040].

[38] B. Jurco and P. Schupp, Noncommutative Yang-Mills from equivalence of star products, Eur.

Phys. J. C 14 (2000) 367 [hep-th/0001032];

B. Jurco, S. Schraml, P. Schupp and J. Wess, Enveloping algebra valued gauge

transformations for non- abelian gauge groups on non-commutative spaces, Eur. Phys. J. C

17 (2000) 521 [hep-th/0006246].

[39] E. Alvarez, Can one tell Einstein’s unimodular theory from Einstein’s general relativity?,

JHEP 03 (2005) 002 [hep-th/0501146].

[40] M. Henneaux and C. Teitelboim, The cosmological constant and general covariance, Phys.

Lett. B 222 (1989) 195.

– 34 –

http://jhep.sissa.it/stdsearch?paper=07%282005%29040
http://arxiv.org/abs/hep-th/0503041
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB707%2C145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB707%2C145
http://arxiv.org/abs/hep-th/0407089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB642%2C210
http://arxiv.org/abs/hep-th/0207115
http://jhep.sissa.it/stdsearch?paper=02%282000%29020
http://arxiv.org/abs/hep-th/9912072
http://arxiv.org/abs/hep-th/9912167
http://jhep.sissa.it/stdsearch?paper=12%282000%29002
http://arxiv.org/abs/hep-th/0002075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB558%2C191
http://arxiv.org/abs/hep-th/0212262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA21%2C2637
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA21%2C2637
http://arxiv.org/abs/hep-th/0402002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA22%2C1119
http://arxiv.org/abs/hep-th/0612231
http://arxiv.org/abs/0704.0929
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB708%2C434
http://arxiv.org/abs/hep-th/0404064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHDA%2C12%2C1040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=DANKA%2C177%2C70
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SOPUA%2C34%2C394
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SOPUA%2C34%2C394
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC16%2C161
http://arxiv.org/abs/hep-th/0001203
http://jhep.sissa.it/stdsearch?paper=09%282006%29026
http://arxiv.org/abs/hep-th/0606021
http://jhep.sissa.it/stdsearch?paper=09%282007%29017
http://arxiv.org/abs/0706.0398
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C66%2C157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C66%2C157
http://arxiv.org/abs/q-alg/9709040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC14%2C367
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC14%2C367
http://arxiv.org/abs/hep-th/0001032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C521
http://arxiv.org/abs/hep-th/0006246
http://jhep.sissa.it/stdsearch?paper=03%282005%29002
http://arxiv.org/abs/hep-th/0501146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB222%2C195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB222%2C195


J
H
E
P
1
2
(
2
0
0
7
)
0
4
9

[41] A. Einstein, Do gravitational fields play an essential part in the structure of the elementary

particles of matter?, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1919 (1919) 433.

[42] M. Visser, Sakharov’s induced gravity: a modern perspective, Mod. Phys. Lett. A 17 (2002)

977 [gr-qc/0204062].

[43] P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem,

Wilmington, Publish or Perish (1984).

[44] A.H. Chamseddine and A. Connes, The spectral action principle, Commun. Math. Phys. 186

(1997) 731 [hep-th/9606001].

[45] V. Gayral and B. Iochum, The spectral action for Moyal planes, J. Math. Phys. 46 (2005)

043503 [hep-th/0402147].

[46] H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur.

Phys. J. C 52 (2007) 435 [hep-th/0703169].

[47] D.N. Blaschke, H. Grosse and M. Schweda, Non-commutative U(1) gauge theory on R4 with

oscillator term, Europhys. Lett. 79 (2007) 61002 [arXiv:0705.4205].

[48] H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl.

Phys. B 679 (2004) 66 [hep-th/0307075].

[49] D. Dou and B. Ydri, Topology change from quantum instability of gauge theory on fuzzy

CP (2), Nucl. Phys. B 771 (2007) 167 [hep-th/0701160].

[50] T. Azuma, S. Bal, K. Nagao and J. Nishimura, Dynamical aspects of the fuzzy CP (2) in the

large-N reduced model with a cubic term, JHEP 05 (2006) 061 [hep-th/0405277];

T. Azuma, S. Bal and J. Nishimura, Dynamical generation of gauge groups in the massive

Yang-Mills-Chern-Simons matrix model, Phys. Rev. D 72 (2005) 066005 [hep-th/0504217].

[51] F. Lizzi, R.J. Szabo and A. Zampini, Geometry of the gauge algebra in noncommutative

Yang-Mills theory, JHEP 08 (2001) 032 [hep-th/0107115].

[52] T. Azuma, S. Iso, H. Kawai and Y. Ohwashi, Supermatrix models, Nucl. Phys. B 610 (2001)

251 [hep-th/0102168].

– 35 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPWPA%2C1919%2C433
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA17%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA17%2C977
http://arxiv.org/abs/gr-qc/0204062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C186%2C731
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C186%2C731
http://arxiv.org/abs/hep-th/9606001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C46%2C043503
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C46%2C043503
http://arxiv.org/abs/hep-th/0402147
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC52%2C435
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC52%2C435
http://arxiv.org/abs/hep-th/0703169
http://arxiv.org/abs/0705.4205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C66
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C66
http://arxiv.org/abs/hep-th/0307075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB771%2C167
http://arxiv.org/abs/hep-th/0701160
http://jhep.sissa.it/stdsearch?paper=05%282006%29061
http://arxiv.org/abs/hep-th/0405277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C066005
http://arxiv.org/abs/hep-th/0504217
http://jhep.sissa.it/stdsearch?paper=08%282001%29032
http://arxiv.org/abs/hep-th/0107115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB610%2C251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB610%2C251
http://arxiv.org/abs/hep-th/0102168

